The Mechanism of the Thermal Rearrangement of the Marasmane Sesquiterpene (+)-lsovelleral. Cyclopropane Ring Closure *via* **an Intramolecular Ene Reaction'**

Thomas Hansson,a Rolf Bergman,b Olov Sterner,a and Borje Wickberg*a

^a*Organic Chemistry 2, Lund Institute of Technology, P.O.B. 124, S-221 00 Lund, Sweden*

b *Division of Organic Chemistry, AB Hassle, S-431 83 Molndal, Sweden*

The reversible thermal conversion of the fungal sesquiterpene isovelleral **(2)** into **(1)** is a unique intramolecular ene reaction proceeding *via* the bicyclic enol **(3),** which is demonstrated by kinetic studies, deuterium incorporation, and the trapping of **(3).**

In the course of a total synthesis of $(+)$ -isovelleral $(2)^1$ an unexpected thermal rearrangement reaction was discovered (Scheme 1). When heated neat, isovelleral (2) has earlier been shown to undergo a thermal rearrangement-elimination reaction to give the furanohydroazulene pyrovellerofuran **(7).2** This reaction was presumed to be initiated by a [1,5]homodienyl hydrogen shift giving an enol *[cf.* (3)] as the first intermediate. We have now found that, when the thermal reaction is performed in toluene solution, the synthetic diastereoisomer **(1)** isomerises reversibly into **(2)** prior to the formation of the furan. At equilibrium the ratio between **(1)** and (2) is **49** : 51. Eventually, small quantities of the furan **(7)** and the epimeric lactarane dialdehydes **(4)** and *(5)* are formed as by-products. The low temperature at which the isomerisation takes place (120-130 *"C),* as well as the nature of the by-products, is reconcilable with a reversible sigmatropic[1,5] homodienyl hydrogen shift mechanism (or synonymously, a retro-ene reaction).

In order to test the pericyclic mechanism, a toluene solution of (2) was heated in the presence of excess of D_2O . The intermediate exomethylenic enol (3) was expected to undergo a diffusion controlled proton-deuterium exchange at the hydroxy group, eventually to yield **(8)** and **(9)** having deuteriated C-12 methyl groups. With careful exclusion **of** acid or base, the presence of D_2O did not significantly increase the formation of the furan **(7)** or of the aldehydes **(4)** and *(5),* and the isotopic purity of the deuteriated products **(8)** and **(9)** was better than 97% as determined by NMR spectroscopy. Thus the reaction also makes isotopically labelled isovelleral **(2)** readily available.

Table 1. Rate constants and deuterium isotope effects for the isomerisation of isovelleral **(2)** into **(1)** and **(9)** into **(8).a**

^a The rate constants (k_1) _H and (k_1) _D follow from the observed equilibrium constant $K = k_1/k_{-1}$ for the interconversion of **(1)** and **(2)** or **(8)** and **(9)**, $K_{\text{H}} = K_{\text{D}} = 1.04$.

Scheme 1. The thermal interconversion of **(1)** and **(2)** was studied in the temperature range 128-150 *"C.*

The intermediacy of enol **(3)** was confirmed by it being trapped exclusively as the E-silyl enol ether **(10)** when either **(1)** or **(2)** was heated in toluene with a 10-fold excess of N -methyl- N -(t-butyldimethylsilyl) trifluoroacetamide. The silylation was in fact faster than recyclisation of the enol **(3),** since no isomerisation of **(1)** into **(2)** or *vice versa* was observed. [Analogous experiments using *N,* 0-bis(trimethy1 sily1)trifluoroacetamide allowed the estimation of the lower limits of rate constants k_2 and k_{-3} (Scheme 1).]†

Scheme 2. Stereochemical restrictions on the isovelleral rearrangement.

On the other hand, when the dialdehyde **(4)** was heated in toluene in the presence of $CF_3(C:O)N(Me)SiBu^tMe₂$ a mixture of the E - and Z-enol ethers (10) and (11) was obtained, the 2-isomer **(11)** predominating in a *ca.* 1.4: 1 ratio. Cleavage of **(10)** or **(11)** with tetrabutylammonium fluoride afforded the dialdehydes (4) and (5) in ca . 2 : 1 ratio. \ddagger

The kinetics of the isomerisation **of (2)** and its deuteriated analogue **(9)** into **(1)** and **(S),** respectively, in approximately 0.045 M solutions in $[{}^{2}H_{8}]$ toluene, were studied by ¹H NMR spectroscopy at 300 **MHz.** Duplicate samples in sealed NMR tubes were immersed in a thermostatic oil bath with efficient stirring. Periodically, the samples were withdrawn and cooled rapidly, and the progress of the reaction was monitored **by** integration of the well resolved NMR signals from H-5 and

t *En route* from **(1)** to *(2)* or *vice versa,* the enol(3) has to undergo a ring inversion. If the rate of this were of the same order or slower than the cyclisation reactions (rate constants k_{-2} and k_3), then the true values of k_2 and k_{-3} would be larger than those indicated by the silylation experiments (ca. 5.4×10^{-5} and 1.2×10^{-4} s⁻¹, respectively, at 407.8 **K).** The kinetic evaluation of these has been hampered by experimental difficulties.

^{3:} The configurations at C-6 in **(4)** and **(5)** and at C-5 in **(10)** and **(11)** were established with nuclear Overhauser enhancement (NOE) and **NOESY** experiments. New compounds were chromatographically homogeneous and gave spectroscopic and analytical and/or highresolution mass spectral data in accordance with their assigned structures.

H-13 in the aldehyde region.§ The reaction followed reversible first-order kinetics (Table 1).

The large primary kinetic isotope effect, which is close to the maximum kinetic isotope effects based on the loss of vibrational zero-point energy in the transition state, is consistent with a concerted hydrogen migration proceeding through a symmetrical transition state. The activation parameters were calculated for the reverse reaction $[(1) \rightarrow (2)]$, E_a 126.0 \pm 2.0 kJ mol⁻¹, log A 11.8 \pm 0.2 s⁻¹; ΔH^{\ddagger} 122.6 \pm 2.0 kJ mol⁻¹, ΔS^{\ddagger} -30.5 ± 3.8 J mol⁻¹ K⁻¹] and were obtained by a least-squares treatment of the experimental data. The reaction parameters are comparable to the corresponding values reported for the thermal opening of 1-acetyl-2,2 dimethylcyclopropane3 and of cis-1-alkenyl-2-methylcyclopropanes.⁴

The low tendency for formation of the dialdehydes **(4)** and **(5)** during the isomerisation of **(1)** and **(2)** in pure toluene was somewhat unexpected, and, even more surprisingly, when a toluene solution of either **(4)** or *(5)* and a small amount of triethylamine (to catalyse the keto-enol equilibrium) was heated for *2.5* h at 175 *"C,* partial cyclisation to **(1)** and **(2)** took place in a reversible process (Scheme **1).** At equilibrium the approximate ratio between **(l), (2), (4),** and *(5)* was 25 : 25 : 35 : 15 as determined by NMR spectroscopy. When **(1)** or **(2)** was heated in the presence **of** a catalytic amount of acetic acid, pyrovellerofuran **(7)** was the main product.

Presumably, a high ring strain in the hydroazulene dialdehydes **(4)** and *(5)* shifts the equilibrium towards the tricyclic cyclopropane derivatives **(1)** and **(2).** This is to our knowledge the first direct observation of a cyclopropyl ring formation via an intramolecular ene reaction of a y-olefinic carbonyl compound. Whereas enones permitting the formation of fiveor six-membered rings easily undergo an ene cyclisation via their enols $[(12), n = 3 \text{ or } 4]$, the reverse reaction normally takes over for $n \le 2$ (Scheme 2).^{5,6} The so-called 'abnormal

§ H-5 and H-13 NMR shifts of the dialdehydes in $[2H_8]$ toluene with SiMe₄ as internal standard were respectively (δ) : (1) $(9.70, 9.17)$; (2) (9.79, 9.08); **(4)** (9.20, 9.03); *(5)* (9.60, 8.98).

7 In a strict sense, this comparison is only valid for the ring-opening steps (1) \rightarrow (3) or (2) \rightarrow (3) with rate constants k_2 and k_{-3} , respectively. However, $(k_1)_{\text{H}} = k_2/(1 + k_2/k_3)$, and the silylation experiments indicate that $k_{-2}/k_3 \approx 0.45$. Therefore the apparent activation parameters for the isomerisation reaction should give a fair approximation of the true parameters for the ring-opening reaction $(1) \rightarrow (3)$.

Claisen rearrangement,' sometimes observed in thermal rearrangements of ally1 aryl ethers possessing an alkyl group in the y-position, apparently involves an ene-retroene reaction sequence with a spirocyclopropane intermediate, but the latter has never been intercepted.^{3,7} When applied to suitably substituted bicyclo[3.1 .O]heptanes, the retro-ene reaction of the **cis-1-acyl-2-alkylcyclopropane** system has been suggested as a synthetic route to hydroazulene sesquiterpenes.8

For steric reasons, **cis-1-methyl-2-vinylcyclopropyl** systems undergo thermal ring opening with almost exclusive formation of Z-1,4-dienes⁴ via an endo-transition state (cf. Scheme 2), which according to theoretical calculations for the simplest case should have $ca. 71$ kJ mol⁻¹ lower energy than the corresponding exo-transition state.9 By analogy with this, the exclusive formation of the silyl ether **(10)** of E-enol **(3)** in our trapping experiments with aldehydes **(1)** and **(2)** is not surprising and is also suggested on inspection of molecular models.

Synthetic work utilizing these findings for synthesis of sesquiterpenes containing the methylcyclopropyl-carbaldehyde group from hydroazulenic precursors is now underway in this laboratory.

Financial support from The Swedish Natural Research Council is gratefully acknowledged.

Received, *11th* June *1990; Corn. 0102611 E*

References

- 1 R. Bergman, T. Hansson, 0. Sterner, and B. Wickberg, *J. Chem. SOC., Chem. Commun.,* 1990,865. Presented in part (B. Wickberg) at The First Princess Chulabhorn Sci. Congr. 1987, Int. Congr. on Nat. Prod., Proc. Vol. III, pp. 136-144, Mahidol University, Bangkok, 1989.
- 2 J. Froborg and G. Magnuson, *Tetrahedron,* 1978, **34,** 2027.
- 3 R. M. Roberts, R. **G.** Landolt, R. N. Greene, and E. W. Heyer, *J. Am. Chem.* **SOC.,** 1967, **89,** 1404.
- 4 J. P. Daub and J. A. Berson, *Tetrahedron Lett.,* 1984, 40, 4463.
- 5 W. Oppolzer and **V.** Snieckus, *Angew. Chem., Znt. Ed. Engl.,* 1978, **17,** 476 and references cited therein.
- 6 J. M. Conia and P. Le Perchec, *Synthesis,* 1975, 1.
- 7 E. N. Marvell, D. R. Anderson, and J. Ong, *J. Org. Chem.,* 1962, **27,** 1109; H.-J. Hansen, in 'Mechanisms of Molecular Migrations,' ed. B. **S.** Thyagarajan, Wiley, New York, 1971, vol. 3, p. 177.
- **8** *S.* A. Monti and T. W. McAninch, *Tetrahedron Lett.,* 1974, 15, 3239.
- 9 R. J. Loncharich and K. N. Houk, *J. Am. Chem. Soc.,* 1988,110, 2089.